ITERATION OF A COMPOSITION OF EXPONENTIAL FUNCTIONS

XIAOYING DONG

ABSTRACT. We show that for certain complex parameters $\lambda_1,\ldots,\lambda_{n-1}$ and λ_n the Julia set of the function

$$e^{\lambda_1 e}$$
. $\cdot^{\lambda_{n-1} e^{\lambda_n z}}$

is the whole plane $\mathbb C$. We denote by Λ the set of *n*-tuples $(\lambda_1,\ldots,\lambda_n)$, $\lambda_1,\ldots,\lambda_n\in\mathbb R$ for which the equation

$$e^{\lambda_1 e^{\cdot \cdot \cdot \cdot - 1e^{\lambda_n z}}} - z = 0$$

has exact two real solutions. In fact, one of them is an attracting fixed point of

$$e^{\lambda_1 e^{\cdot \cdot \cdot \lambda_{n-1} e^{\lambda_n z}}}$$

which is denoted by $\,q$. We also show that when $\,(\lambda_1\,,\,\ldots\,,\,\lambda_n)\in\Lambda$, the Julia set of

$$\lambda_{n-1}e^{\lambda_n}$$

is the complement of the basin of attraction of q. The ideas used in this note may also be applicable to more general functions.

A continued composition of n exponential functions

$$f_i(z) = e^{\lambda_i z}, \qquad \lambda_i \in \mathbb{C}, i = 1, 2, \ldots, n,$$

shall be denoted by the symbol $E_{\lambda_1,\ldots,\lambda_n}$ which is an abbreviation for

$$e^{\lambda_1 e^{\cdot \cdot \cdot \lambda_{n-1} e^{\lambda_n z}}}$$

that is, each e^{λ_i} is used as the exponent of the preceding.

It had until 1981 been an open problem, proposed by Fatou [9], whether $\mathcal{T}(e^z) = \mathbb{C}$. In 1981 Misiurewicz [11] proved this conjecture answering this sixty year old question of Fatou. In 1984, Baker and Rippon [4] studied the

Received by the editors July 15, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 30D05; Secondary 58F08.

sequence of iterations of $E_a(z)=e^{az}$ where a is a nonzero complex parameter (similar results were obtained by Devaney [5]). They analysed the way in which $\mathcal{N}(E_a)$ divides the plane and the various possible limit functions for convergent subsequences of $\{E_a^n\}_{n=0}^\infty$ in components of $\mathcal{N}(E_a)$. They proved that there are no limit functions (and so $\mathcal{T}(E_a)=\mathbb{C}$) provided $\lim_{n\to\infty} E_a^n(0)=\infty$, in particular this is the case for all real $a>\frac{1}{e}$. This extends the result of Misiurewicz for a=1. In this paper we study the Julia set of the function

$$E_{\lambda_1,\ldots,\lambda_n}(z) = e^{\lambda_1 e^{\lambda_1 z}}.$$

where $\lambda_1, \ldots, \lambda_n$ are complex parameters, and extend Baker and Rippon's result for the case n=1. Some aspects of the convergence of the sequence of the natural iterates of this function were also studied by Thron [13] in 1957 and Shell [12] in 1959.

The Julia set of an entire function f can be defined as either the set of points at which the family $\{f^n\}_{n=0}^{\infty}$ of iterations of f is not normal or as the closure of the set of repelling periodic points [1].

Throughout this paper we denote the set of complex numbers by $\mathbb C$, the set of real numbers by $\mathbb R$, the Julia set of $E_{\lambda_1,\dots,\lambda_n}$ by $\mathscr T(E)$ and the normal set of $E_{\lambda_1,\dots,\lambda_n}$ by $\mathscr N(E)$.

We need the following known results:

Theorem A. Unless f(z) is a rational function of order 0 or 1 the set $\mathcal{F}(f)$ has the following properties (proved for rational functions in [7, 8] and for entire functions in [9]):

- (1) $\mathcal{F}(f)$ is a nonempty perfect set.
- (2) $\mathcal{T}(f^n) = \mathcal{T}(f)$ for any integer $n \ge 1$.
- (3) $\mathcal{T}(f)$ is completely invariant under the mapping $z \to f(z)$, i.e., if α belongs to $\mathcal{T}(f)$ then so do $f(\alpha)$ and every solution β of $f(\beta) = \alpha$.

Theorem B. Let D be a domain of the complex plane with at least three boundary points and let f be analytic in \overline{D} , except that if D is unbounded f need not be analytic at ∞ . Let f map D into itself and suppose that no subsequence of $\{f^n\}_{n=0}^{\infty}$ has the identity map as a limit in D (in particular this is so if f is not a univalent map of D onto D). Then the whole sequence $\{f^n\}_{n=0}^{\infty}$ converges in D to a constant limit $\alpha \in \overline{D}$ [3].

We denote by \mathscr{S} the set of all finite singularities of $f^{-1}(z)$ and \mathscr{E} the set of points of the form $f^n(s)$, $s \in \mathscr{S}$, $n = 0, 1, 2, \ldots$. Then a point belongs to \mathscr{E} precisely when it is a finite singularity of some inverse function $f^{-n}(z)$ of an iterate of f(z) [2].

To study the stable behavior of a transcendental entire function f we need to discuss the possible limit functions of subsequences of $\{f^n\}_{n=0}^{\infty}$ in the domains concerned. The following results are developed by Baker [2].

Theorem C. Let \mathcal{E}' denote the derived set of \mathcal{E} , then any constant limit of a sequence $\{f^{n_k}(z)\}_{k=0}^{\infty}$ in a component of the normal set $\mathcal{N}(f)$ belongs to

$$\mathcal{L} = \mathcal{E} \cup \mathcal{E}' \cup \{\infty\} = \overline{\mathcal{E}} \cup \{\infty\}.$$

Theorem D. If the set \mathcal{L} defined in Theorem C has an empty interior and a connected complement, then no sequence $\{f^{n_k}\}_{k=0}^{\infty}$ has a nonconstant limit function in any component of $\mathcal{N}(f)$.

A point $\omega \in \widehat{\mathbb{C}}$ is an asymptotic value for a map f if there is a path $\alpha \colon [0, 1) \to \mathbb{C}$ such that $\lim_{t \to 1} \alpha(t) = \infty$ and $\lim_{t \to 1} f \circ \alpha(t) = \omega$.

Let U be a connected component (domain) of $\mathcal{N}(f)$. U is preperiodic if there exist integers p and q such that $f^{p+q}(U) = f^p(U)$; it is periodic if p=0. A component of $\mathcal{N}(f)$ which is neither periodic nor preperiodic is wandering.

A map f is called of critically finite type (or simply finite type) if f has finitely many critical values and asymptotic values. The following theorem is due to L. Goldberg and L. Keen, and describes the stable behavior of finite type entire functions [10].

Theorem E. If $f: \mathbb{C} \to \mathbb{C}$ is of finite type, then f has no wandering domain.

We remark that the application of the last result mentioned above is essential in the proof of the following theorem:

Theorem 1. Let \mathcal{S} be the set of the finite singularities of the inverse function of $E_{\lambda_1,\ldots,\lambda_n}$. If each forward orbit of $s\in\mathcal{S}$ tends to ∞ , then $\mathcal{T}(E)=\mathbb{C}$. In particular, if $\lambda_i>0$ for $i=1,2,\ldots,n$ and the forward orbit of 0 tends

to ∞ , then $\mathcal{T}(E) = \mathbb{C}$.

In order to prove the theorem we need the following lemmas.

Lemma 2. Finite type maps are closed under composition.

Proof. Assume that two maps f and g are of finite type.

If α is a critical value of f(g(z)), then there exists β such that

$$f'(g(\beta))g'(\beta) = 0$$
 and $f(g(\beta)) = \alpha$.

If $f'(g(\beta)) = 0$, then α is a critical value of f as well; if $g'(\beta) = 0$, then there is at least one critical value of g corresponding to α under f. It follows that the number of critical values of f(g(z)) is less than or equal to the sum of the critical values of f and g.

If α is an asymptotic value of f(g(z)), then there exists a critical path $\Gamma: [0, 1) \to \mathbb{C}$ such that

$$\lim_{t\to 1}\Gamma(t)=\infty\quad\text{and}\quad \lim_{t\to 1}f(g(\Gamma(t)))=\alpha.$$

We claim that there exists γ which is either a finite number or ∞ such that

$$\lim_{t\to 1}g(\Gamma(t))=\gamma.$$

Otherwise, let us denote by M the set of the limiting points of $g(\Gamma(t))$ as $t\to 1$. Then $f(z)=\alpha$ for each $z\in M$. Since f is a nonconstant entire map, M does not contain any limit points, that is M is a discrete set. Suppose that M contains more than one point. Arbitrarily pick two different points γ_1 , $\gamma_2\in M$, then they can be separated by two disjoint closed discs D_1 and D_2 with $\gamma_i\in D_i$ where i=1, 2 and

$$(D_1 \cup D_2 \setminus \{\gamma_1, \gamma_2\}) \cap M = \emptyset.$$

But the fact that each γ_i is a limiting point implies that the curve $g(\Gamma(t))$ where $t \in [0,1)$ must frequently enter each disc D_i in fact infinitely many times. Thus the curve $g(\gamma(t))$ where $t \in [0,1)$ intersects the circles C_i which are the boundaries of D_i infinitely many times as $t \to 1$. Since C_1 , say, is compact, there must be a limiting point γ_0 on it, and this limit point does not belong to M. Contradiction! Therefore M consists of a single point γ which is an asymptotic value of g. Since g is continuous, the image of Γ is also a path. Thus the number of the asymptotic values of f(g(z)) is less than or equal to the number of the asymptotic values of g(z). Q.E.D.

As an immediate consequence, $E_{\lambda_1,\ldots,\lambda_n}$ is of finite type.

Lemma 3. The only finite singularities of $E_{\lambda_1,\ldots,\lambda_n}^{-1}$ are

$$0, 1, e^{\lambda_1}, e^{\lambda_1 e^{\lambda_2}}, \dots, e^{\lambda_1 e^{\lambda_1}}$$

Proof. This follows from the simple facts that $E_{\lambda_1,\ldots,\lambda_n}$ does not have any algebraic singularity and the inverse function

$$E_{\lambda_1,\ldots,\lambda_n}^{-1}(z) = \frac{1}{\lambda_n} \ln \left(\frac{1}{\lambda_{n-1}} \ln \left(\cdots \left(\frac{1}{\lambda_1} \ln z \right) \cdots \right) \right)$$

is well defined if and only if $z \neq 0$, 1, e^{λ_1} , $e^{\lambda_1 e^{\lambda_2}}$, ..., $e^{\lambda_1 e^{\lambda_1}}$. Q.E.D

Therefore, with Baker's notation

$$\mathcal{S} = \left\{0, 1, e^{\lambda_1}, e^{\lambda_1 e^{\lambda_2}}, \dots, e^{\lambda_1 e^{\lambda_1}}\right\}$$

and

$$\mathcal{L} = \operatorname{Closure}\{E_{\lambda_1, \dots, \lambda_n}^k(s), s \in \mathcal{S}, k = 1, 2, \dots\}.$$

We are going to show the following lemma.

Lemma 4. Under the assumptions of Theorem 1, the complement of $\mathcal L$ is connected.

Proof. It suffices to show that if P is a countable subset of \mathbb{C} , then the complement $\mathbb{C}\backslash P$ of P is connected. Towards this end, pick arbitrarily two points

 q_1 , $q_2 \in \mathbb{C} \backslash P$. Through each q_i , i=1, 2, there exists a family L_i of uncountably many straight lines. There must be $l_i \in L_i$, i=1, 2, such that l_1 and l_2 have an intersection and contain no points of P. It follows from the fact that $\mathbb{C} \backslash P$ is path-connected that $\mathbb{C} \backslash P$ is connected. Q.E.D.

Now we are ready to prove Theorem 1:

Proof of the Theorem 1. The set \mathscr{L} has empty interior and connected complement. According to a theorem of I. N. Baker [2], each limit function of the family $\{E_{\lambda_1,\ldots,\lambda_n}^k\}_{k=0}^\infty$ must be either a constant belonging to \mathscr{L} or ∞ .

It remains to show that the family $\{E_{\lambda_1,\ldots,\lambda_n}^k\}_{k=0}^\infty$ is normal nowhere. Suppose that $\mathscr{N}(E)$ is not empty. Let U be a component of $\mathscr{N}(E)$. Since

Suppose that $\mathscr{N}(E)$ is not empty. Let U be a component of $\mathscr{N}(E)$. Since $E_{\lambda_1,\ldots,\lambda_n}$ is critically finite, $E_{\lambda_1,\ldots,\lambda_n}$ does not possess a wandering domain [6]. Thus there exist nonnegative integers l and m such that $G=E^m_{\lambda_1,\ldots,\lambda_n}(U)$ is invariant under $g=E^l_{\lambda_1,\ldots,\lambda_n}$.

It follows from Theorem B that the whole sequence $\{g^k\}_{k=0}^{\infty}$ converges in G to a constant limit which belongs to \overline{G} . Denote this limit by α . Since G is invariant under g, if α is finite, we have $g(\alpha) = \alpha$. This is to say that α is periodic.

By the hypothesis of the theorem it is clear that for each $s \in \mathcal{S}$,

$$\lim_{k\to\infty}E_{\lambda_1,\ldots,\lambda_n}^k(s)=\infty.$$

Thus $s \in \mathcal{S}$ is not eventually periodic, and

$$\mathcal{L} = \operatorname{Closure}\{E_{\lambda_1, \dots, \lambda_n}^k(s), s \in \mathcal{S}, k = 1, 2, \dots\}$$
$$= \{E_{\lambda_1, \dots, \lambda_n}^k(s), s \in \mathcal{S}, k = 1, 2, \dots\} \cup \{\infty\}.$$

Applying Theorem C, $\alpha \in \mathcal{L} \setminus \{\infty\}$ cannot be periodic. Contradiction! Therefore, α must be ∞ .

It follows from

$$\lim_{k \to \infty} E_{\lambda_1, \dots, \lambda_n}^{kl}(z) = \lim_{k \to \infty} g^k(z) = \infty$$

uniformly on G that

$$\lim_{k \to \infty} E_{\lambda_1, \dots, \lambda_n}^{kl-1}(z) = \infty$$

uniformly on G.

Consequently, for each $j \ge 0$,

$$\lim_{k\to\infty} E_{\lambda_1,\ldots,\lambda_n}^{kl-j}(z) = \infty$$

uniformly on G.

For each sequence

$$\left\{E_{\lambda_1,\ldots,\lambda_n}^{k_m}\right\}_{m=0}^{\infty}\subset\left\{E_{\lambda_1,\ldots,\lambda_n}^{k}\right\}_{k=0}^{\infty},$$

there exists an integer $j \ge 0$ such that there is a subsequence

$$\left\{E_{\lambda_1,\ldots,\lambda_n}^{k_{m_t}}\right\}_{t=0}^{\infty}\subset\left\{E_{\lambda_1,\ldots,\lambda_n}^{k_m}\right\}_{m=0}^{\infty},$$

which is a subsequence of $\{E_{\lambda_1,\ldots,\lambda_n}^{kl-j}\}_{k=0}^{\infty}$. Thus we have

$$\lim_{t\to\infty} E_{\lambda_1,\ldots,\lambda_n}^{k_{m_t}}(z) = \infty$$

in G. Furthermore we conclude that the whole sequence $\{E^k_{\lambda_1,\ldots,\lambda_n}\}_{k=0}^{\infty}$ has limit ∞ .

Now we claim that the sequence $\{(E_{\lambda_1,\ldots,\lambda_n}^k)'\}_{k=0}^\infty$ of derivatives of $E_{\lambda_1,\ldots,\lambda_n}^k$, $k=0,1,\ldots$, also tends to ∞ on G. In fact,

$$(E_{\lambda_1,\ldots,\lambda_n})'(z) = \prod_{i=1}^n \lambda_i E_{\lambda_i,\ldots,\lambda_n}(z),$$

and so, according to the chain rule

$$(E_{\lambda_1,\ldots,\lambda_n}^k)'(z) = \prod_{j=1}^k (E_{\lambda_1,\ldots,\lambda_n})'(E_{\lambda_1,\ldots,\lambda_n}^{j-1}(z))$$
$$= \prod_{i=1}^n \prod_{j=0}^{k-1} \lambda_i^k E_{\lambda_i,\ldots,\lambda_n}(E_{\lambda_1,\ldots,\lambda_n}^j(z)).$$

Therefore,

$$\ln |(E_{\lambda_1, \dots, \lambda_n}^k)'(z)| = k \sum_{i=1}^n \ln |\lambda_i| + \sum_{i=0}^{k-1} \sum_{i=1}^n \ln |E_{\lambda_i, \dots, \lambda_n}(E_{\lambda_1, \dots, \lambda_n}^j(z))|.$$

Since

$$\begin{split} \lim_{k \to \infty} |E_{\lambda_1, \dots, \lambda_n}^{k+1}(z)| &= \lim_{k \to \infty} |E_{\lambda_1, \dots, \lambda_n}(E_{\lambda_1, \dots, \lambda_n}^k(z))| \\ &= \lim_{k \to \infty} |e^{\lambda_1 E_{\lambda_2, \dots, \lambda_n}(E_{\lambda_1, \dots, \lambda_n}^k(z))}| = \infty \,, \end{split}$$

for $z \in G$, it follows that

$$\lim_{k\to\infty} |E_{\lambda_2,\ldots,\lambda_n}(E_{\lambda_1,\ldots,\lambda_n}^k(z))| = \infty.$$

With a similar argument, consequently we have

$$\lim_{k\to\infty}|E_{\lambda_i,\ldots,\lambda_n}(E^k_{\lambda_1,\ldots,\lambda_n}(z))|=\infty$$

for i = 1, ..., n, which implies that

$$\lim_{k\to\infty} \ln|(E_{\lambda_1,\ldots,\lambda_n}^k)'(z)| = \infty,$$

and our assertion follows immediately. It follows from the Bloch-Landau Theorem that if D is a disc contained in G, then $E^k_{\lambda_1,\ldots,\lambda_n}(D)$ contains a disk of

arbitrarily large radius. Since $\mathscr{T}(E) \neq \varnothing$, there exists an integer $k_0 > 0$ such that

$$E_{\lambda_1,\ldots,\lambda_n}^{k_0}(D)\cap\mathcal{T}(E)\neq\emptyset$$

which is impossible, since $D \subset G \subset \mathcal{N}(E)$.

In the case where all $\lambda_i > 0$, the argument is much simpler since the fact that

$$\lim_{k\to\infty} E_{\lambda_1,\ldots,\lambda_n}^k(0) = \infty$$

implies that each forward orbit of a real number tends to ∞ . Particularly, each forward orbit of $s \in \mathcal{S} \subset \mathbb{R}$ tends to ∞ , and the result follows immediately. Q.E.D.

Now we focus our attention on the case when $\lambda_i > 0$, $i = 1, 2, \ldots, n$, and $E_{\lambda_1, \ldots, \lambda_n}$ has exactly two distinct positive fixed points. From the convexity of the graph of $E_{\lambda_1, \ldots, \lambda_n}$, for z real it follows that of these one is attracting and the other is repelling.

We denote the attracting one by q and the repelling one by p as shown in Figure 1 (where the dotted line signifies the horizontal asymptote of the function). Also, from the convexity of $E_{\lambda_1,\ldots,\lambda_n}$, clearly q>p.

Noting that there exists $\varepsilon > 0$ such that

$$|E'_{\lambda_1,\ldots,\lambda_n}(p)| > 1 + \varepsilon.$$

We have the following theorem:

Theorem 6. Let $\lambda_i > 0$, i = 1, 2, ..., n. If $E_{\lambda_1, ..., \lambda_n}$ has an attracting fixed point q, then $\mathcal{T}(E)$ is the complement of the basin of attraction of q.

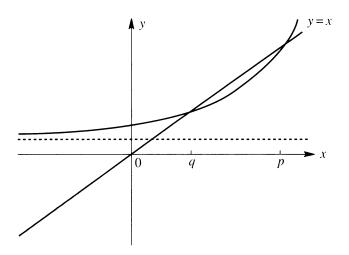


FIGURE 1

Proof. Write z = x + iy with $x, y \in \mathbb{R}$. Let $H = \{z \in \mathbb{C} | x < p\}$. Since, for $z \in H$,

$$\begin{split} |E_{\lambda_1,\,\dots,\,\lambda_n}(z)| &= |E_{\lambda_1,\,\dots,\,\lambda_{n-1}}(e^{\lambda_n x + i\lambda_n y})| \\ &\leq E_{\lambda_1,\,\dots,\,\lambda_{n-1}}(e^{\lambda_n x}) < E_{\lambda_1,\,\dots,\,\lambda_n}(p) = p \,, \end{split}$$

the images of H under $\{E_{\lambda_1,\ldots,\lambda_n}^k\}_{k=0}^\infty$ are bounded by the disc centered at 0 with radius p. Clearly the interval $[0,q]\subset H$ is contained in the basin of attraction of q. It follows from Vitali's Convergence Theorem that H is included in the basin of attraction of q. Hence $\mathcal{F}(E)$ lies to the right of the vertical line x=p. Furthermore we can show that $\mathcal{F}(E)$ is the complement of this basin.

We denote by $\mathscr A$ the set of points $z\in\mathbb C\setminus\overline H$ such that $E_{\lambda_1,\ldots,\lambda_n}(z)\in\mathbb C\setminus\overline H$. In the next stage, we examine the magnitude of the derivative $E'_{\lambda_1,\ldots,\lambda_n}$ of $E_{\lambda_1,\ldots,\lambda_n}$ on $\mathscr A$. In fact we are going to prove that

$$(7) |E'_{\lambda_1,\ldots,\lambda_n}(z)| \ge 1 + \varepsilon$$

for each $z\in\mathscr{A}$ by a contradiction. Suppose that $|E'_{\lambda_1,\ldots,\lambda_n}(z)|<1+\varepsilon$ for some $z\in\mathscr{A}$. Let us write

$$|E_{\lambda_i,\dots,\lambda_n}(z)| = e^{A_i}$$
 and $E_{\lambda_i,\dots,\lambda_n}(p) = e^{P_i}$

for $i = 1, 2, \ldots, n$. Then

$$|E_{\lambda_1,\ldots,\lambda_n}(z)| \geq E_{\lambda_1,\ldots,\lambda_n}(p)$$

if and only if $A_i \ge P_i$ for each i = 1, 2, ..., n. For confirmation, we argue as follows:

We note the following two cases:

(1) If j=1, then since $z\in\mathscr{A}$, and thus $E_{\lambda_1,\ldots,\lambda_r}(z)\in\mathscr{A}\subset\mathbb{C}\backslash\overline{H}$,

$$e^{A_1} = |E_{\lambda_1, \dots, \lambda_n}(z)| > p = E_{\lambda_1, \dots, \lambda_n}(p) = e^{p_1},$$

and so $A_1 > P_1$.

(2) If j > 1, suppose that there exists j such that $A_j < P_j$. We obtain the following consequence:

$$e^{A_{j-1}} = e^{\lambda_{j-1}e^{A_j}\cos B_j} < e^{\lambda_{j-1}e^{A_j}} < e^{\lambda_{j-1}e^{P_j}} = e^{P_{j-1}}$$

where B_j is some real value. Hence $A_j < P_j$ implies $A_{j-1} < P_{j-1}$, and so in particular $A_1 < P_1$ which contradicts case (1).

¹Notice that $p \in \mathcal{F}(E)$, so $\mathcal{F}(E)$ is not strictly to the right of the line x = p. The idea of this argument is due to Devaney [6].

Now we claim that (7) holds, for otherwise

$$\begin{split} \operatorname{Re} E_{\lambda_1, \dots, \lambda_n}(z) &\leq |E_{\lambda_1, \dots, \lambda_n}(z)| = \frac{|E'_{\lambda_1, \dots, \lambda_n}(z)|}{\prod_{i=1}^n \lambda_i \prod_{i=2}^n |E_{\lambda_i, \dots, \lambda_n}(z)|} \\ &\leq \frac{|E'_{\lambda_1, \dots, \lambda_n}(z)|}{\prod_{i=1}^n \lambda_i \prod_{i=2}^n E_{\lambda_i, \dots, \lambda_n}(p)} \\ &= \frac{p|E'_{\lambda_1, \dots, \lambda_n}(z)|}{E'_{\lambda_1, \dots, \lambda_n}(p)} &\leq \frac{p(1+\varepsilon)}{1+\varepsilon} = p \end{split}$$

which contradicts $E_{\lambda_1,\dots,\lambda_n}(z)\in\mathbb{C}\backslash\overline{H}$ and thus shows our assertion.

Let D be a closed disc with radius δ and $E^k_{\lambda_1,\ldots,\lambda_n}(D)\subset\mathbb{C}\backslash\overline{H}$ for all $k\geq 0$. Then

$$|E'_{\lambda_1,\ldots,\lambda_n}(E^k_{\lambda_1,\ldots,\lambda_n}(z))| \ge 1 + \varepsilon$$

for $z \in D$ and all k. Hence

$$|(E_{\lambda_1,\ldots,\lambda_n}^k)'(z)| = \prod_{i=1}^k |E_{\lambda_1,\ldots,\lambda_n}'(E_{\lambda_1,\ldots,\lambda_n}^{i-1}(z))| \ge (1+\varepsilon)^k,$$

which tends to ∞ as $k \to \infty$.

It follows from the Bloch-Landau Theorem that $E^k_{\lambda_1,\dots,\lambda_n}(D)$ contains a disc with arbitrary large radius for k sufficiently large. Thus there exists an integer $k_0>0$ such that $E^{k_0}_{\lambda_1,\dots,\lambda_n}(D)\cap H\neq\varnothing$. But this is absurd. The contradiction shows the impossibility of $E^k_{\lambda_1,\dots,\lambda_n}(D)$ staying in $\mathbb{C}\backslash\overline{H}$ for all k. Thus the complement of the basin of attraction of q is nowhere dense in \mathbb{C} . As an immediate consequence, $\{E^k_{\lambda_1,\dots,\lambda_n}\}_{k=0}^\infty$ is normal nowhere in the complement of the basin. This is equivalent to saying that $\mathscr{T}(E)$ is the complement of the basin of the attraction of q. Q.E.D.

Remark. In order to study the dynamical behavior of a given function f, we often need to investigate the possible limit functions of subsequences of $\{f^n\}_{n=0}^{\infty}$ in the set of normality. The ideas used in this work may also be applicable to more general functions in the following sense:

If we assume that f is of critically finite type, the finiteness theorem combining Baker's results provides a useful tool for finding the relevant limit functions. In this case, the set $\mathscr S$ only consists of finitely many points. This implies that $\mathscr E$ is a countable set. If furthermore we assume the complement of $\mathscr L$ is connected and the interior of $\mathscr L$ is empty (this occurs, for instance, when $\mathscr L$ happens to be a countable set), then Baker's results enable us to give a better estimate of the possible limit functions. To precisely determine the limit functions of subsequences of $\{f^n\}_{n=0}^{\infty}$, we need to examine the order of the growth of $\{f^n\}_{n=0}^{\infty}$ in the domain concerned. One way to do this examination is to consider the sequence of derivatives $\{(f^{n_k})'\}_{k=0}^{\infty}$ of $\{f^{n_k}\}_{k=0}^{\infty}$. If some

disc in the domain concerned is expanded under the iterations of f, with the Bloch-Landau Theorem we are able to establish a contradiction and conclude $\mathcal{F}(f) = \mathbb{C}$. To see an application to the family of the composition of sine functions with n parameters, let

$$S_{\lambda_1}(z) = \lambda_1 \sin z$$

and

$$S_{\lambda_1,\ldots,\lambda_{k+1}}(z) = S_{\lambda_1,\ldots,\lambda_k}(\lambda_{k+1}\sin z)$$

for $k=1,\ldots,n$. Since finite type maps are closed under composition by Lemma 2, $S_{\lambda_1,\ldots,\lambda_n}$ is of critically finite type. It is easy to check that the finite singularities of $S_{\lambda_1,\ldots,\lambda_n}^{-1}$ are

$$\pm \lambda_1$$
, $\lambda_1 \sin(\pm \lambda_2)$, ..., $S_{\lambda_1, \dots, \lambda_{n-1}}(\pm \lambda_n)$.

With the same method as we used in the proof of Theorem 1, one can show that if each forward orbit of finite singularities of $S_{\lambda_1,\ldots,\lambda_n}^{-1}$ tends to ∞ , then the Julia set of $S_{\lambda_1,\ldots,\lambda_n}$ is the whole plane.

ACKNOWLEDGMENT

The author is grateful to Professor Sanford Segal for valuable suggestions.

REFERENCES

- 1. I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252-256.
- 2. ____, Limit functions and sets of nonnormality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 467 (1970), 1-10.
- 3. ____, The iteration of polynomials and transcendental entire functions, J. Austral. Math. Soc. Ser. A 30 (1981), 483-495.
- I. N. Baker and P. J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 49-77.
- R. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. 11 (1984), 167–171.
- 6. ____, An introduction to chaotic dynamical systems, Benjamin/Cummings, 1986.
- 7. P. Fatou, Sur les equations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271.
- 8. ____, Sur les equations fonctionelles, Bull. Soc. Math. France 48 (1920), 33-94, 208-313.
- 9. ____, Sur l'itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337-370.
- 10. L. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynamical Systems 6 (1986), 183-192.
- 11. M. Misiurewicz, On iterates of e^z , Ergodic Theory Dynamical Systems 1 (1981), 103–106.
- 12. D. L. Shell, On the convergence of infinite exponentials, Proc. Amer. Math. Soc. 13 (1962), 678-681.
- 13. W. J. Thron, Convergence of infinite exponentials with complex elements, Proc. Amer. Math. Soc. 8 (1957), 1040-1043.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, OSHKOSH, WISCONSIN 54901